Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Braz. oral res. (Online) ; 34: e008, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055524

ABSTRACT

Abstract This study aimed to investigate the effects of chronic restraint stress (RS) and a high-fat diet (HFD) on the osseointegration of titanium implants in a rat model. After the surgical insertion of titanium implants into the metaphysis of the tibial bone, the rats were randomly divided into four equal groups (n = 8 each): control (CNT), restraint stress (RS), high-fat diet (HFD), and restraint stress plus high fat diet (RS-HFD). CNT: Rats received no further treatment during the 92-day experimental period. RS: Stress was applied to the rats beginning from two days after the implant surgery for one hour per day for the first 30 days, two hours per day for the next 30 days, and three hours per day for the last 30 days. HFD: Rats were fed a HFD for the following 90 days starting two days after surgery. RS-HFD: Rats were fed a HFD and RS was applied to rats for the following 90 days, starting two days after surgery. At the end of the experimental period, the rats were euthanized, and the implants and surrounding bone tissues were removed for histological analysis. Statistical analysis was performed by one way ANOVA and Bonferrroni tests. There were no significant differences in the bone-implant connection levels between the groups (p > 0.05), but in the HFD and RS-HFD groups, the bone filling ratios were found to be lower compared with the controls (p < 0.05) The data analyzed in this study suggest that an HFD with or without chronic RS adversely affected bone tissue in the rats during the 90-day osseointegration period.


Subject(s)
Humans , Animals , Stress, Psychological/physiopathology , Tibia/physiopathology , Titanium , Osseointegration/physiology , Diet, High-Fat/psychology , Bone-Anchored Prosthesis , Aspartate Aminotransferases/blood , Reference Values , Tibia/surgery , Tibia/pathology , Time Factors , Triglycerides/blood , Blood Glucose/analysis , Random Allocation , Cholesterol/blood , Reproducibility of Results , Rats, Sprague-Dawley , Dental Implantation, Endosseous/methods , Alanine Transaminase/blood
2.
Braz. oral res. (Online) ; 34: e008, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089382

ABSTRACT

Abstract This study aimed to investigate the effects of chronic restraint stress (RS) and a high-fat diet (HFD) on the osseointegration of titanium implants in a rat model. After the surgical insertion of titanium implants into the metaphysis of the tibial bone, the rats were randomly divided into four equal groups (n = 8 each): control (CNT), restraint stress (RS), high-fat diet (HFD), and restraint stress plus high fat diet (RS-HFD). CNT: Rats received no further treatment during the 92-day experimental period. RS: Stress was applied to the rats beginning from two days after the implant surgery for one hour per day for the first 30 days, two hours per day for the next 30 days, and three hours per day for the last 30 days. HFD: Rats were fed a HFD for the following 90 days starting two days after surgery. RS-HFD: Rats were fed a HFD and RS was applied to rats for the following 90 days, starting two days after surgery. At the end of the experimental period, the rats were euthanized, and the implants and surrounding bone tissues were removed for histological analysis. Statistical analysis was performed by one way ANOVA and Bonferrroni tests. There were no significant differences in the bone-implant connection levels between the groups (p > 0.05), but in the HFD and RS-HFD groups, the bone filling ratios were found to be lower compared with the controls (p < 0.05) The data analyzed in this study suggest that an HFD with or without chronic RS adversely affected bone tissue in the rats during the 90-day osseointegration period.


Subject(s)
Animals , Female , Stress, Psychological/physiopathology , Tibia/physiopathology , Titanium , Osseointegration/physiology , Diet, High-Fat/psychology , Bone-Anchored Prosthesis , Aspartate Aminotransferases/blood , Reference Values , Tibia/surgery , Tibia/pathology , Time Factors , Triglycerides/blood , Blood Glucose/analysis , Random Allocation , Cholesterol/blood , Reproducibility of Results , Rats, Sprague-Dawley , Dental Implantation, Endosseous/methods , Alanine Transaminase/blood
3.
Braz. oral res. (Online) ; 32: e85, 2018. tab, graf
Article in English | LILACS | ID: biblio-952161

ABSTRACT

Abstract This study aimed to investigate the effects of different doses of systemic melatonin application on new bone formation during mandibular distraction osteogenesis (DO) in rats. Mandibular DO was performed on 30 adult female Sprague-Dawley rats, which were randomly divided into three groups: control group (CNT), melatonin dose 1 (MLT-D1), and melatonin dose 2 (MLT-D2). A five-day latent waiting period and a ten-day distraction phase followed the surgery. After the surgery, rats from the MLT-D1 and MLT-D2 groups received 25 and 50 mg/kg melatonin, respectively, at 7, 14, 21, 28, and 35 days. The animals were euthanised 28 days after distraction, i.e. at 43 days after surgery. Histological and histomorphometric analyses revealed that the distracted bone area was completely filled with new bone formation in all three groups. The MLT-D2 group exhibited the most new bone formation, followed by MLT-D1 and CNT. The melatonin groups had more osteoclasts than the CNT (p < 0.05). The number of osteoblasts was higher in the melatonin groups than in the CNT group, and the MLT-D2 had more osteoclasts than the MLT-D1 group (p < 0.05). Finally, the osteopontin (OPN) and vascular endothelial growth factor (VEGF) levels were higher in the melatonin groups than in the CNT group, and the MLT-D2 had higher OPN and VEGF levels than the MLT-D1 (p < 0.05). This study suggests that systemic melatonin application could increase new bone formation in DO.


Subject(s)
Animals , Female , Osteogenesis/drug effects , Bone Regeneration/drug effects , Osteogenesis, Distraction/methods , Melatonin/administration & dosage , Antioxidants/administration & dosage , Osteoblasts/physiology , Osteoclasts/physiology , Osteogenesis/physiology , Bone Regeneration/physiology , Immunohistochemistry , Random Allocation , Reproducibility of Results , Treatment Outcome , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/analysis , Osteopontin/analysis , Mandible/surgery , Mandible/drug effects , Mandible/physiology , Mandible/pathology
SELECTION OF CITATIONS
SEARCH DETAIL